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Abstract. The configurational entropy of a binary mixture of unequal hard spheres is analysed 
over a wide range of densities and concentrations as a sum of two contributions: a pair term, sa, 
arising from two-body spatial correlations. and a residual term, As. that is due to correlations 
involving more than two particles. The validity of a one-phase ordering criterion, based on the 
non-monotonic behaviour of As as a function of the total packing fraction, is investigated in 
relation to the phase transformations undergone by the model. 

1. Introduction 

A bidisperse mixture of hard spheres may exist in a surprisingly rich variety of both ordered 
and disordered phases whose formation is solely driven by entropic effects [l]. The phase 
diagram of a binary hard-sphere mixture has been investigated using computer simulation 
techniques 11-31 as well as by other theoretical methods, which are typically based on 
integral-equation [ 4 4 ]  or density-functional approaches [7-121. As is well known, the 
model has great relevance in the chemical physics of sterically stabilized suspensions of 
mesoscopic colloidal particles in a solvent [13]. The theoretical predictions of the nature of 
the stable solid phases formed at high density and on the existence of a spincdal instability 
leading to phase separation have been largely confirmed by experiments performed on 
colloidal suspensions [14-161. 

In this paper we shall try to elucidate some aspects of the statistical thermodynamics of 
a hard-sphere mixture that are closely related to the interplay between entropy and ordering 
effects in thefluid phase. At a given global density and for an assigned relative concentration 
of the two species. the equilibrium state of the model is the state of maximum entropy. The 
present analysis is based on the explicit evaluation of the contribution arising from two- 
body spatial correlations to the entropy of the system, and is similar to an analysis that was 
recently carried out for monodisperse model fluids 117-191. In general, the total excess 
entropy of a multicomponent system can be expressed as an infinite series: 

n=2 

where s, is the excess enaopy per particle in units of the Boltzmann constant and the 
partial entropies s, are obtained from the integrated contributions of the spatial correlations 
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between n-tuples of particles. In particular, the two-body term can be written as [ZO]: 

where p is the total number density, xi is the mole fraction of component i (i = 1,2), and 
the quantities gjj(r) are the partial pair distribution functions (PDF). 

The residual multiparticle entropy 

AS S, - sz (3) 

despite its minor quantitative relevance in the overall balance, turns out to be a rather 
sensitive indicator of the structural and dynamical changes that take place in the system. In 
this respect, it is rather illuminating to register a change of sign (from negative to positive 
values) that As undergoes in close proximity to the freezing point of hard spheres [17]. 
Retrospectively, one realizes that this condition monitors a crossover in the behaviour of 
multiparticle correlations (specifically, those involving at least threeparticles) from a weakly 
to a strongly interacting regime. In fact, the increasing efficiency demanded in order to pack 
the spheres into a smaller and smaller volume ultimately sets off an ordering process, which 
initially spreads over a microscopic range of distances. It is clear that in an infinite system 
this cooperative phenomenon cannot be properly resolved except at a sufficiently high level 
of the correlation-function hierarchy [21]. As to the entropy of the system, the subtle 
but rather natural counterpart of such a structural rearrangement is a relative increase of 
configurational states that become accessible on a local scale 1221. Hence, the systematic 
entropy loss produced by localization (SZ c 0) is tempered at high densities by the gain that 
is associated with the sprouting of spatial order in the fluid (As > 0). 

There is, apriori, no compelling reason why the 'threshold' identified by the zero of the 
residual multiparticle enwopy should coincide with a thermodynamic phase boundary of the 
system. In fact, the latter is always settled through a comparison of the free energies of two 
coexisting phases. The rationale behind the criterion is rather that of an intrinsic signature 
of the germination, in the fluid phase, of a new type of local order, an event that should be 
plausibly related to the macroscopic transformations that are eventually undergone by the 
system. 

In addition to bare hard spheres, the 'one-phase' entropic criterion As@, T) = 0 has 
been successfully checked along the freezing line of a Lennard-Jones liquid over a wide 
range of temperatures T [18,19]. 

In this paper we plan to analyse the residual multiparticle entropy A s  of a binary hard- 
sphere mixture as a function of the equilibrium parameters (total number density and relative 
concentration of the two species) and of the sphere-size ratio (Y E q/u, , where ai is the 
hard-core diameter of the ith component, and 02 c U ! .  

The layout of the paper is as follows. In section 2 we introduce the theoretical framework 
of the cakulation. The results are then presented and discussed in section 3. Section 4 is 
devoted to concluding remarks. 

2. Theory and implementation 

In order to carry out an extensive analysis of As over the thermodynamic plane spanned 
by the packing fractions = $r,ox;u: of the two species, we resofled to the Percus- 
Yevick (PY) approximation [23]. As is well known, the PY recipe is a flexible first- 
strike tool for the calculation of the structural properties since the solution is available 
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in closed analytical form for a multicomponent mixture also [24]. In general, the overall 
agreement of the PY results with the simulation data in the case of a bidisperse hard-sphere 
mixture is fairly good [4,5,25,26]. The drawbacks of the approximation are similar to 
those found in a monodisperse system. More specifically, the values at contact of the 
radial distribution functions turn out to be underestimated, while their spatial oscillations 
are slighdy shifted to larger distances. Furthermore, the first minimum in the like-like 
distribution functions is systematically deeper than that predicted by computer simulation 
and may, eventually, become negative. In particular, for values of the sphere-size ratio in 
the range 0.2 5 II 5 0.74, a window in concentration opens up where the first dip in the 
PDF of the larger-sized spheres becomes negative in the density range that is relevant for 
estimating the freezing point of the mixture. This feature clearly restricts the domain where 
the w approximation may fumish physically meaningful predictions. 

Some calculations of the pair entropy sz for a binary hadsphere mixture in the PY 
approximation have already been presented by Laird and Haymet for three values of the 
size ratio (a = 0.8,0.5,0.33) at three different concentrations (XI = 0.2,0.5,0.8) [27]. 
However, the guiding philosophy of the above authors was that of verifying how good an 
estimate of the total excess entropy is obtained if one resorts only to the two-body term. In 
this paper we propose a different ‘reading’ that is based, instead, on a careful inspection of 
the behaviour of the residual multiparticle entropy As as a function of the number density 
and of the relative concentration of the two species. One further difference between the 
present calculations and those reported in [27] lies in the choice of the equation of state (EOS) 
that is used for the evaluation of the total excess entropy. In fact, Laird and Haymet used 
a version of the Mausoori-CarnahanStarling-Leland EOS [28] modified by Kranendonck 
and Frenkel [26]. This phenomenological recipe for the EOS of the mixture does indeed 
provide a very accurate fit of the simulation data. However, our present goal is not so 
much that of pursuing a close quantitative correspondence with the numerical experiments. 
Instead, we intend to perform a critical comparison between the information on As, which 
can be autonomously gathered within the PY framework, and the current knowledge on the 
phase diagram of the mixture. Therefore, in order to avoid the risk of unbalancing the 
‘local‘ estimate of As through an input for se, that would be Spurious to the PY recipe, 
we followed an internal route to the EOS of the mixture, specifically that provided by the 
density-fluctuation theorem. This choice, as opposed to the alternative one that stems from 
the virial theorem, can be formally justified on some rather general grounds, independently 
of irs better quantitative agreement with the exact Eos. In fact, it can be shown that in a 
variational scheme it is the ‘fluctuation’ pressure that self-consistently descends from the 
stationarity property of the functional leading to the PY approximation [29]. Furthermore, 
at variance with the compressibility route, the %rial’ expression for the partial chemical 
potential of the ith species does not asymptotically reduce to the exact expression for the 
work of putting one single particle of species i into the multicomponent fluid in the limit 
where the radius of the inserted particle grows to infinity [30]. 

We also carried out some test calculations using the Lee and Levesque (LL) 
analytical representation of the radial distribution functions obtained through Monte Carlo 
simulations [31]. The results corroborated the overall reliability of the trends given by the 
PY approximation. 

As far as the technical details of the calculations are concerned, after Fourier inverting 
the analytical expressions for the partial structure factors, we obtained the radial distribution 
functions~gij(r) over a range Gm N 310 with a spatial resolution Ar N 1.2 x With 
such values for R,- and Ar, we found that the numerical integrations needed for the 
calculation of s2 were sufficiently stable at the third decimal place ail over the explored 
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space of parameters. The total excess entropy sex follows analytically from equations (2.7), 
(2.8) and (2.13) of [30]. We estimated that the numerical error affecting A s  did not exceed 
0.005 in the most delicate regime corresponding to highly asymmetric sizes and rather dilute 
concentrations of the larger-sized spheres. 
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Figure 1. Residual multiparticle entropy As(?. I{ ; e) plotted as a function of the total packjag 
fraction I ,  for two values of the size ralio: (a) a = 0.85; (b) CI = 0.1. The curves refer 
to different values of the larger-particle mole fraction and are labelled as follows: circles, 
XI = triangles, x1 = lo-'; squares, X, = IO-'; crosses, XI = 0.3; open diamonds, 
X I  = 0.4; full diamonds, XI = 0.6; downward triangles. xI = 0.9. The unlabelled full c w e  
represents the corresponding PY result in a singlecomponent hard-sphere fluid. 

The resulting difference As(rj, x1; U). when plotted as a function of the total packing 
fraction r j  for assigned values of U and XI, has a shape similar to that found in a monodisperse 
hard-core fluid [17]. Figure 1 shows the residual multiparticle entropy for two values of 
the size ratio ((U = 0.1.0.85) and for a number of increasing mole fractions of the larger 
spheres. As discussed in section 1 ,  we w e  the locus of points qo(xl; CY) where A3 changes 
sign. We anticipate that the behaviour of qo as a function of XI is distinctively different 
according to whether the size ratio U is smaller or bigger than .=z 0.72. In fact, as is seen from 
figure I@), in the strongly asymmetric regime the negative well of As becomes wider and 
deeper for increasing values of XI, eventually shaping into the outermost single-component 
profile. Correspondingly, the quantity rj&; U) increases monotonically with x1 up to the 
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‘pure’ hard-sphere threshold qrs) N 0.499 (a value that is consistently calculated within 
the PY approximation). On the other hand, for a = 0.85, the dependence of As upon XI 

is neatly resolved only for densities beyond the minimum (qmjn = 0.4). Furthermore, for 
mole fractions of the larger spheres strictly less than one, the residual-entropy curves lie 
systematically beneath the single-component result. Consequently, q&l: a) turns out to be 
larger than q;”. One can also appreciate from figure 1 that the above quantity shows a 
‘re-entrant’ behaviour as x1 grows from zero to one. 

3. Results 

The overall efficiency in the way a number of non-overlapping spheres with two different 
sizes distribute, on the average, onto the available space is the key factor that rules the 
statistical geometry of the model. As such, the spheresize ratio plays a critical role in 
fixing the shape of the phase diagram. 

In what follows, we organize the presentation of the results into three subsections, two 
of which are devoted to a discussion of the opposite regimes of grossly similar and very 
dissimilar radii. In the third subsection we focus on the properties of an equimolar mixture 
over the entire range of sphere-size ratios. 

3.1. Close size-similarity regime: solid-fluid phase equilibria 

Computer simulation studies of the phase diagram have recently been performed for diameter 
ratios in the range 0.85 < M < 1 [2] .  In this regime, obvious ‘continuity’ reasons with 
the phase behaviour of the pure system formed by equal-sized spheres (a = 1) clearly 
suggest that the dense mixture eventually freezes into a substitutionally disordered FCC or 
HCP crystal, in which particles of the two species are distributed irregularly over the sites 
of the underlying lattice. As the size ratio is varied from 1 to 0.85. the originally spindle 
character of the sotid-liquid co-existence curve is found to change over to an azeotropic 
type and, eventually, into a eutectic diagram. Density-functional theories predict that the 
solubility of the larger spheres in the crystal of predominantly smaller spheres vanishes for 
a < 0.85 [7,11]. 

The thermodynamic stability of more complex solid structures (such as the hexagonal 
A B 2  phase or the cubic AB13 phase, whose central body consists of an icosahedral cluster 
formed by 13 small spheres) has also been investigated [1,3]. 

Typical radial distribution functions of the mixture in this regime are shown in [26]. In 
figure 2 we compare the locus of points where As changes sign, i.e. q&l; a). with the 
total packing fraction of the mixture at the freezing point, q&l: a), foc three sample size 
ratios in the range 0.85 < a < 1. The composition dependence of~qO(x1; CL) turns out to be 
broadly consistent with the behaviour of qr(xl; a). The ordering threshold of the mixture, as 
is resolved by the residual multiparticle entropy, falls almost systematically slightly beyond 
the freezing line. However, what catches the eye more than the rather small quantitative 
discrepancy, which for a = 0.85 never exceeds 3.3%, is the absence in q&: a) of any 
cusp singularity at low values of X I .  Such a feature is notoriously associated with the 
genesis of a eutectic point in the phase diagram of sufficiently asymmetric mixtures. On the 
other hand, upon decreasing the size ratio, the maximum in qo(x1; a) slides towards smaller 
mole fractions of the larger spheres as correspondingly does the maximum in q&q; a). 

The results presented in figure 2 clearly demonstrate that the locus of points traced 
through the zero of the residual multiparticle entropy is very closely related to the 
thermodynamic phase boundary of the homogeneous fluid phase. The ‘existence of an 
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Figure 2. The locus of points qo(q :a r )  where 
As(% X I :  U) = 0, plotted as afuncrion ofthe larger- 
particle mole fraction XI for three values of the size 
ratio: (a )  U = 0.85; (b) e = 0.90: (c) ar = 0.95. 
The theoretical result is shown M a full CUNe and 
is compared with the corresponding simulation data 
for the freezing p i n t  of the mixture (circles) which 

.have been extracted from figure 8 of [Z]. The 
prediction for qo(q:&) obtained through the Lee 
and Levesque parametrization scheme 1311 is also 
shown in (a) as a chain curve. 

intrinsic threshold in the fluid phase, correlated with the freezing density, has also 
recently been postulated by Rosenfeld through an analysis, carried out for a large 
spectrum of potentials, of a 'critical' instability manifested by the hyper-netted-chain (HNC) 
approximation with respect to the diagrammatic iteration process [6]. His results for the 
binary hard-sphere mixture are qualitatively consistent with the shape of I&,; a). 

The quantitative differences between qo(xl ;  a) and qr(x1; a) cannot be soIeIy ascribed to 
the PY approximation, whose overall reliability is largely confirmed by comparison with the 
results obtained through the LL parametrization of the simulation data. One such comparison 
is reported in figure 2(a) for a = 0.85. On the other hand, as already noted in section 1, 
such differences might well be intrinsic to the 'one-phase' character of the criterion we 
are exploiting. We should also remark that, within the present theoretical framework, the 
system is described as a homogeneous and isotropic mixture of two species. Therefore, 
any reliable inference on a transformation that leads to a phase separation of the fluid into 
two co-existing solids with different concenkations (as is the case for the eutectic point) is 
likely to be beyond the limits of the present scheme. This may explain why the criterion 
misses the expected evolution towards a eutectic behaviqur. 

3.2. The highly asymmetric regime 

The landmark value of the sphere-size ratio for the sbongly asymmetric regime is about 
0.2. In fact, Biben and Hansen, using the Rogers-Young closure, predicted that for a 5 0.2 



On entropy and ordering in binary hard-sphere mixtures 9859 

a binary mixture would separate into two fluid phases if the volume fractions occupied 
by the two particle species were roughly comparable [5]. This result was later confirmed 
by Lekkerkerker and Stroobants [32] and, most recently, by Rosenfeld [33] with different 
theoretical approaches. Indeed, a demixing transition has been observed in mixtures of 
colloidal particles of two different sizes [16]. Evidence of entropy-driven demixing has 
been also presented in a computer simulation study of an additive mixture of large and 
small cubes on a lattice [341. 

As is well known, the PY approximation does not predict a macroscopic phase separation 
of a binary hard-sphere mixture into two disordered phases [30]. Nevertheless, the ‘osmotic 
depletion’ effect, which is responsible for the appearance of a miscibility gap, is already 
built into the PY closure [33]: in fact, in the limit of vanishing size ratios, a very sharp 
and narrow peak builds up near contact in the PDF of the larger spheres [4]. However, 
the increase of gtl(u1) as a + 0 is not strong enough to induce divergent concentration 
fluctuations in the long-wavelength limit. 

The density behaviour of the residual multiparticle entropy in the strongly asymmetric 
regime is much more sensitive to variations of the relative concenh-ation of the two species 
than is found in the opposite regime of radii that ari: not very dissimilar. As is seen from 
figure I(b), upon lowering the mole fraction of the larger spheres, the well depth reduces 
while the position of the minimum shifts to lower values of q. In particular, for a 5 0.14, 
the minimum eventually disappears (to within the numerical precision of the calculation) as 
xj drops below - 0.03: correspondingly, for lower values of the concentration, As is found 
to be everywhere positive and to increase monotonically with the total packing fraction of 
the mixturet. Following the discussion made in section 1 on the rationale of the ordering 
criterion based on the residual multiparticle entropy, it turns out to be natural to associate 
such a ‘switch’ in the behaviour of As against q with the genesis of a different type of 
order in the mixture. The presently estimated threshold in the relative concentration of the 
two species falls close to the region where the mixture is expected to demix into two fluid 
phases. In fact, we recall that Biben and Hansen predicted a ‘critical’ concentration of the 
larger spheres, below which phase separation occurs, of about 0.02 for a = 0.1 [5], while 
Rosenfeld predicts a value about one order of magnitude lower [33]. 

In figure 3 we present our results for the loci where As(q.  XI; (U) = 0. The data show 
a sharp change of behaviour in the compositional dependence of qo(x1; a) for a 5 0.2. In 
fact, we find that in this range of size ratios the function q&l; a) lies below the ‘pure’ 
hard-sphere threshold all over the concentration range explored and increases monotonically 
with X I .  The loci where the residual entropy vanishes correspond to states of the mixture 
that are far enough away, as far as the relative Concentration of the two species is concerned, 
from the structural condition described above in relation to the phenomenon of fluid-fluid 
demixing. In fact, in the range of parameters exploited in figure 3, the density profile 
attained by the larger spheres is almost unaffected by the presence of the smaller-particle 
component. Figure 4 shows the density evolution of the three PDF for a = 0.2 and x1 = 0.1. 
Tbe feature that visibly emerges for q 2 0.431 (namely, where As becomes positive) is a 
second-neighbour maximum in gn(r), whose position is shifted with respect to the close- 
contact distance 02 by an amount equal to ul. We surmise that the vanishing of the residual 
multiparticle entropy signals the incipient short-range ordering of the Smaller spheres, a 
process that appears to be ‘ruled’ by the larger-sphere component. We recall that the largest 
relative size of a particle that may fit inside the cavity formed by four touching spheres 

t A more definite statement on the functional behaviour of A s  in this range of parameters will call for an analytical 
expansion of the theory in the limit of very small packing fractions. 
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Figure 3. The locus of points q&; a) where Ash ,  XI: a) = 0, plotted as a function of the 
larger-particle mole fraction XI in the highly asymmetric sire-mi0 rCgime: crosses. e = 0.1; 
squares, a = 0.2: circles, a = 0.22; diamonds, a = 0.25; triangles, D: = 0.3. The prediction for 
qa(x1: a) obtained through the Lee and Levesque parametrization scheme [3i] is also shown 
for a = 0.1 as a chain curve. 

(in a basic tetrahedral arrangement) is $& - 1 2: 0.225. One may thus expect that for 
CY less than such a value, the average spatial distribution of the larger spheres will not be 
affected in a sensitive way-even at moderately high densities-by the presence of the 
smaller spheres. In fact, their size is such that they can be easily accommodated within 
the interstitial holes that are left over in the structural pattern that is autonomously built up 
by the larger particles. This conclusion can be readily checked through the comparison of 
g l l ( r )  with the PDF of a onecomponent fluid of spheres with diameter U ,  which occupy the 
same volume fraction as the larger spheres in the mixture. As is seen from figure 4(c), the 
only relevant difference that is resolved for CY = 0.2 between the two PDF is the expected 
increase of the value attained by g l l ( r )  at contact. Apart from this, the profile of this 
function in the mixture closely reproduces the corresponding profile in the ‘equivalent’ pure 
fluid. However, upon increasing the relative size of the smaller spheres up to a value of just 
0.3 while still keeping 17 = 0.5, the profile of the first coordination shell in gll ( r )  visibly 
distorts. As can be appreciated from figure 5, the function drops after contact much faster 
than in the pure fluid a secondary minimum appears that is followed by a new satellite 
peak at a relative distance (U, + 02). Correspondingly, a maximum shows up in g&) at 
a distance - 2uz. These features clearly indicate that, for CY 2 0.2, the smaller-particle 
component distinctly interferes with the packing of the larger spheres: as a result, the local 
density profile becomes modulated by hvo spatial periodicities, which are fixed by the sizes 
of both species. 

The relative ordering of the two species in the fluid phase is attained through 
a continuous structural change, which is clearly resolved in the jine structure of the 
configurational entropy but is not strong enough to affect the thermodynamics of the mixture. 
This process preludes the freezing of the mixture into a solid phase. In fact, upon increasing 
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0 3 4 
Figure 4. Radial distribution 
functions .q;;(r). plotted as a .~ 
function of r / q , ,  for 01 = 0.2, 
XI = 0.1 and for three values 
of the total packing fraction: (a) 
'I = 0.35; (b) 'I = 0.43: 
(c) q = 0.5. The doubledot 
chain curve in (c) represents the 
PDF of a one-component fluid 
of hard spheres with diameter 
a occuovine the same volume .. - 
fraction as the larger spheres in 

0 1 2 3 4 the mixture (er = 0.467). The 
inset shows amagnificationofthe 
short-range stlucture. 

the mole fraction of the larger particles, the freezing threshold of the mixture will settle 
onto the pure-liquid value and, correspondingly. the 'distance' between the two boundaries 
will progressively close up (see figure 3). 

3.3. The case of an equimolar mixture 

In this section we shall ultimately focus on the phase diagram of a mixture whose 
concentration ratio is kept fixed at a value 1 : 1. Figure 6 shows qo(x l ;a )  plotted as 
a function of (Y for x ,  = 4. In the range of size ratios 0.50 5 OL 5 0.75, the PDF of 
the larger-sized spheres becomes negative in the region of the first dip for a density that 
corresponds to a value of the residual multiparticle entropy that is still negative but very 
close to zero. Actually, the break-point of the approximation is found to lie beyond the 
minimum undergone by As, i.e. along the rapidly increasing branch of the curve ( see  
figure 1). One may tentatively 'bridge' the gap in qo(x1; OL) by extrapolating As up to its 
close intercept with the rl axis: the results are shown in figure 6 as a broken curve. 
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Figure S. Radial distribution functions gij (r) .  plotted as a function of r/ol1, for OT = 0.3, 
11 = 0.1 and q = 0.5. The double-dot chain curve represents the PDF of a one-component fluid 
of hard spheres with diameter 0 1  occupying the same volume fraction as the larger spheres in 
the mixture (VI = 0.403). The inset shows a magnification of the short-range structure. 

Upon decreasing the value of 01 from one, the ordering threshold monitored by As 
is initially raised towards higher values of the total packing fraction, consistent with the 
trend ascertained by the numerical simulation experiments. We also report in figure 6 
the predictions given by two different density-functional theories. The chain curve is 
the outcome of a weighted-density-functional approach in the form set up by Denton and 
Ashcroft. This curve represents the total packing fraction of the fluid equimolar mixture at 
co-existence with a disordered FCC crystal for 1 > CY > 0.76, and with a pure FCC solid 
(composed of larger spheres only) for lower size ratios?. It is worth emphasizing that in 
this latter case the global composition of the mixture after freezing is no longer equimolar: 
in fact, the higher-density state is that of a pure solid in equilibrium with a binary fluid that 
is now confined onto a smaller volume. 

The open symbols refer instead to an equimolar mixture of oppositely charged hard 
spheres at infinite temperuture 181. In this limit, the Coulomb interactions are ineffective 
but for imposing a condition of overall charge neutrality. Thus, at variance with the 
previous case, the relative compositions of the two species are constrained to attain the 
same value even in the solid phases. The theory of Brami and co-workers predicts disjoint 
stability domains for three different solid structures, namely the compositionally disordered 
FCC crystal, the NaCl structure formed by two interpenetrating FCC lattices, and the CsCl 
structure, a variant of the body-cen6ed cubic structure where a small sphere lies in the 
centre position of the unit cubic cell formed by eight larger particles. According to the 
above theory, the disordered FCC is stable in the range 1 > 01 > 0.85, the CsCl structure 
in the range 0.75 > CY > 0.70, and the NaCl structure in the range 0.46 > E > 0.33. 

t This c w e  was obtained from figure 9 of 1111 via the density of the larger spheres in the fluid mixtuce at 
co-existence with the solid. 
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Figure 6. The locus of points qo&l :  a) where As(q. XI: e) = 0, plotted as a function of the 
size ratio a for an equimolar mixtture.~ The theoretical result is shown as a full curve. The 
broken e w e  corresponds to an extrapolation of the intercept of As with thb q axis in the 
range of parameters where the PDF of the larger-sized spheres goes negative before As becomes 
positive. We also show the available data for the freezing point of the mixture, calculated 
through computer simulation (full circles) [Z] and via two different deniity functional theories. 
The chain curve was obtained from figure 9 of [I I]. Open circles, triangles and squares rrpresent 
the freezing thresholds of a charged fluid equimolar mixture at infinite temperature coexisting 
with a compositionally disordered FCC lattice, with a "21-type structure, and with a CsCI-type 
structure, respectively [SI. 

. .  
For values of wintermediate between the three stability ranges, no zero is found in the 
difference between the grand potential of the fluid and that of any trial solid phase (among 
those cited above). 

On the other hand, the CsCl and NaCl stmctures turn out to be metastable in the theory of 
Denton and Ashcroft: Indeed, the greater stability over a very wide range of concentrations 
of a pure solid, precipitated by the larger spheres, in equilibrium with a two-component 
fluid is confirmed by the recent simulation of a mixture with size ratio 01 = 0.58 [l]. 

As far as the present analysis is concerned, it is clear from figure 6 that the shape of 
qo(q: CY) is broadly consistent with the 'topology' of the freezing points found by Brami 
and co-workers. Even the gap that opens up in q~( . r l ;  U) as a consequence of the physical 
breakdown of the PY approximation might be related, even if somewhat indirectly, to the 
stability gap registered between the CsCl and NaCl structures. The correspondence between 
the present theory and the results found by Brami and co-workers is, aposteriori, not all that 
surprising: in fact, by construction, the present entropic criterion actually resolves the onset 
of those ordering phenomena that drive the system to a state with the same composition as 
the parent disordered phase. 

On the basis of the above argument, it would be natural to argue that the freezing line 



obtained by Denton and Ashcroft should systematically lie below the locus i&l; a). As 
is seen from figure 6, this turns out to be the case for a 2 0.22 only, where the two curves 
intersect. Hence, granted that the weighted-density-functional theory correctly predicts the 
nature of the fluid-solid co-cxistence even in this highly asymmetric regime, we surmise 
that the crossover undergone by the two curves is to be related with the possibility that 
some other efficient spatial organization of the two species may stabilize the fluid phase 
over a wider density range than in the pure system. In fact, as already emphasized in 
the preceding section, it is precisely for LY 5 0.22 that the dense fluid mixture achieves an 
‘optimal’ structural condition where the smaller spheres can actually fit inside the interstices 
formed by the larger particles. This state, while still being homogeneous, possesses a high 
degree of short-range order as to the relative spatial distribution of the two species. As such, 
it is likely to be competitive with a non-homogeneous state of the mixture where a pure 
solid co-exists with a binary fluid. We argue that this fact may indeed account for the more 
extended stability range, along the q axis, of the fluid phase in the strongly asymmetric 
size-ratio regime: the solid phase happens to be ‘delayed’ until when even the inter-species 
ordering of the fluid phase no longer pays enough in terms of global packing efficiency. 

4. Coneluding remarks 

The partial resolution of the configurational entropy into contributions arising from n-body 
spatial correlations leads to an intermediate statistical-thermodynamical picture that is based 
on the behaviour of the residual multiparticle entropy As as a function of the parameters 
that characterize the equilibrium state of the fluid. This quantity is obtained from the total 
entropy of the fluid after subtraction,, of a (qualitatively uninteresting) background value 
that is constructed as the sum of the,.ideal and pair terms. As such, As conveys a type 
of information that is intermediate between the purely macroscopic level and the fully 
statistical-mechanical description of the system, and may be used as a sort of ‘litmus paper’ 
so as to unveil those more or less hidden features of the phase behaviour that axe specifically 
ascribable to triplet or higher-order correlations. 

The primary motivation for this study was that of exploiting the usefulness of such 
an indicator in the case of a more complex model than previously investigated, namely a 
binary mixture composed of different relative concentrations of unequal hard spheres. In 
this regard, we have found rather unambiguous interrelations between the most appariscent 
phenomena that occur in the mixture (freezing, phase separation) and the thermodynamic 
behaviour of As(?, X I :  a) in the fluid phase. 

On the basis of the present results, it seems fair to conclude that the residual multiparticle 
entropy contains a germinal indication of the phase transformations that take place in the 
system. The generality of this statement has also recently been checked in the case of the 
gas-liquid phase transition 1351. The analysis of As for both a Lennard-Jones and a hard- 
core Yukawa fluid shows that this quantity sharply blows up to positive values on both sides 
of the spinodal region. More interestingly, the criterion accounts for both the gas-liquid and 
freezing transitions and even predicts the existence of a point in the thermodynamic space 
of the metastable liquid phase that actually unveils as an intrinsic underlying signature of 
the triple-point phase coexistence. 

We plan to extend the present study to a binary mixture with more realistic interatomic 
potentials in a forthcoming paper. 



~~ On entropy and ordering in binary hard-sphere mixtures 9865 

Acknowledgments 

This work was supported by the Minister0 dell’Universit8 e della Ricerca Scientifica e 
Tecnologica (MURST) and by the Consonio Interuniversitario Nazionale di Fisica della 
Materia (INFM), Italy. 

References 

[I] Eidridge M D. Madden P A and Frenkel D 1993 Nature 365 35 
[21 Knnendonck W G T and Frenkel D 1991 Mol. Phys 72 679 
[31 Eldridge M D, Madden P A and Frenkel D 1993 Mol. Phys. 79 105; Mol. Phys. 80 987 
[4] Biben T and Hansen I-P 1990 Eumphys. Lett 12 347 
[SI Biben T and Hansen 3-P 1991 Phys. Rev. Lett. 66 2215: 1991 J.  Phys.: Condens. Motrer 3 65 
161 Rosenfeld Y 1992 Phys. Rev. A 46 4922 [n Barrat J L, Baus M and Hansen J-P 1986 Phys. Rev. Lett. 56 1063; 1987 J. Phys. C; Solid State Phys. 20 

(81 Brami B, Joly F, Banal J Land Hansen I-P 1988 Phys. Lett. 132A 187 
[SI Rick S W and Haymet A D I 1989 J.  Chem Phys. 90 1188 

[IO] Zeng X C and Oxtoby D W 1990 J. Chem Phys. 93 4357 
[Ill Denton A R and Ashcroft N W 1990 Phys. Rev. 42A 7312 
(121 Xu H and Baus M 1992 J.  Phys.: Condew. Matter 4 L663 
[I31 Pusey P N 1991 Liquids, Freezing and Glass Tramition ed I-P Hansen, D Levesque and J Zinn-Justin 

[I41 B d e m  P, Ottewill R H and Pusey P N 1990 J. Chem Phys. 93 1299 
[U] Bartleu P. Ottewiil R H and Pusey P N 1992 Phys. Rev. Lett. 68 3801 
[161 Sanyal S, Easwar N. Ramaswamy S and Sood A K 1992 Eumphys. Lett. 18 107 

van Duijneveldt J S, Heinen A W and Le!&rkerker H N W 1993 Ewophys. Left 21 369 
Kaplan P D, Rouke J L, Yodh A G and Pine D J 1994 Phys. Rev. Lett. 72 582 

[I71 Ciaquinta P V and Giunta G 1992 Phyica A 187 145 
[IS] Giaquinta P V, Giunta G and Preatipino GiarriUa S 1992 Phys. Rev. A 45 6966 
[I91 clecamo C. Giaquinta P V and Giunta G 1993 J. Phys.: Condens. Matter 5 75 

An application of the entropy criterion to the prediction of the phase diagram of Cso has been recently made: 

I201 Hemando J A 1990 Mol. Phys. 69 319 
[211 Uhlenbeck G E 1968 Fundmntal  Problems in Statbtical M e c h i c s  Ired E G D &hen (New York Wiley) 

Fisher M E 1972 Essays in Physics vol4 ed G K T Conn and G. N Fowler (New York Academic) 
[221 Ackerson B J 1993 Nature 365 11 
[23] Percus I K and Yevick G J 1959 Phys. Rev. 110 1 
[24] Lebowie J L 1964 Phys. Rev. A 133 895 
[251 Fries P H and Hansen I-P 1983 MOL Phys. 48 891 
1261 Kranendonck W G T and Frenkel D 1991 Mol. Phys. 72 715 
1271 Laird B B and Haymet A D I 1992 J. Chem. Phys. 97 2153 
[28] Mansoori G A, Camahan N F, Starling K E and Leland T W Jr 1971 J. Chem Phys. 54 1523 
[29] Baxter R I 1967 J. Chem Phys. 47 4855; 1971 Physical Chemisfry An Advanced Treatise ed H Eyring. 

D Henderson and W Jest (New York Academic) p 332 
[30] Lebowitz J L and Rowlioson J S 1964 J. Chem. Phys. 41 133 
[31] Lee L L and Levesque D 1973 Mol. Phys. 26 1351 
[32] Lekkerkerker H N W and Strooban& A 1993 Physica A 195 387 
[33] Rosenfeld Y 1994 Phys. Rev. Left. 72 3831 
[34] Dijkstra M and Frenkel D 1994 Phys. Rev. Lett. 72 298 
[35] Giaquinta P V, Giunta G and Malescio G 1994 Enrropy versus correlkiow in simplefiids: the gas-liquid 

1413 

(Amsterdam: North-Holland) p 763 

Cheng A, Klein M Land Caccamo C 1993 Phys. Rev. Lett. 71 1200 

phose transition to be published 


